Science and Technology of Food Industry

电子鼻测定榴莲果肉臭味气体的 模型建立及应用

马 勇 刘水琳 汤轶伟 励建荣^{*} (渤海大学化学化工与食品安全学院 辽宁锦州 121013)

摘 要: 利用 PEN3 便携式电子鼻检测榴莲果肉的臭味响应值,并运用密封、打孔的方法使信号曲线能较快的达到平稳状态。通过 PCA 分析确定榴莲果肉臭味的第一主成分和第二主成分的总贡献率达到 99.49% 而且 0 孔、8 孔、16 孔三种不同孔数处理的榴莲果肉臭味有明显差异,所以,电子鼻识别榴莲果肉臭味可行; 通过 Loadings 分析认为硫化物是榴莲果肉臭味气体的主要成分; 根据检测到的数据 利用 PLS 法建立了榴莲果肉臭味气体相对含量的模型,运用统计软件建立了 PLS 线性拟合曲线 得到 0 孔、8 孔、16 孔的相对含量拟合的线性相关系数为 0.997,说明榴莲果肉臭味气体相对含量与电子鼻输出信号之间有较好的线性关系; 测得 0 孔、8 孔、16 孔的相对含量的平均相对误差均小于 10%。因此 本文所建模型可准确地测定榴莲果肉臭味气体的相对含量,从而提供一种评定榴莲臭味的实用方法。 关键词: 电子鼻 榴莲臭味,PLS 模型

Establishment and application of the model for detecting the odor of durian pulp

MA Yong LIU Shui-lin ,TANG Yi-wei ,LI Jian-rong*

(College of Chemistry Chemical Engineering and Food Safety Bohai University Jinzhou 121013 China)

Abstract: The response values of the odor of durian pulp were detected by PEN3 portable E-nose. The method of sealing and punching was applied to make the signal curve reach steady much faster. The total contribution of the first and the second principal component of the durian pulp was 99.49% by PCA, and the odors of the three samples were obviously different. It was feasible to identify the differences between the odors with different levels of durian pulp by E-nose. The result of loadings was that sulfide was the main component. According to the data detected a model of measuring the relative content of the odor was established by the method of PLS and a linear fitting curve of which the correlation coefficient was 0.997 was drawn up by statistical software. This showed that there was a good linear relationship between the relative content of the odor and the output signal of E-nose. The average relative errors of the samples with 0 hole β holes and 16 holes were 6.3% 6.5% and 6.7%. Therefore in this paper, the model can accurately determine the relative content of the odor of durian pulp so as to provide a practical method to evaluate durian odor.

Key words: E-nose; durian odor; PLS model 中图分类号: TS201 文献标识码: A

doi: 10. 13386/j. issn1002 - 0306. 2015. 07. 003

文章编号:1002-0306(2015)07-0060-04

榴莲 ,又称韶子 ,台湾称 "金枕头" [1-2]。产自东南亚和南亚热带国家 ,是热带国家名贵的水果。有 "南国水果之王"的美誉。近几年 ,我国广东、海南和台湾等地有小量引种栽培[3-4]。榴莲果肉营养丰富 ,蛋白质含量为 2.7% ,碳水化合物为 9.7% ,脂肪含量为 4.1% ; 榴莲果肉中维生素 (V_c 、Va、 Vb_2)、氨基酸 (谷氨酸等) 和人体必需的矿质元素 (K、Ca 等) 含量

丰富[5-6]。榴莲果肉滑似奶膏、甜润可口、齿颊留香,但它奇特的臭味,不堪入鼻[7-8]。一些国家禁止在公共场所携带、食用榴莲[9-10]。为了使榴莲这种名贵且高营养的水果登上大雅之堂,马勇等[11]采用臭氧法消除榴莲果肉臭味,并用气质联用仪测定了榴莲果肉臭味气体成分的变化,感官评定了榴莲果肉在不同密封时间后臭味气体富集的效果。此外,相关榴

收稿日期: 2014-05-15

作者简介: 马勇(1960-) 男 博士 教授 研究方向: 食品资源开发与利用。

基金项目: 国家自然科学基金项目(31201370); 辽宁省食品安全重点实验室开放课题(LNSAKF2011027)资助。

^{*} 通讯作者: 励建荣(1964-) 男 博士 教授 研究方向: 食品、农产品加工与安全。

表 2 电子鼻实验参数

Table 2 Test parameters of E-nose

项目	采样时间间隔	清洗时间	零点调节时间	连接样品时间	测量时间	进样流量
参数	1.0s	100.0s	5.0s	5.0s	480.0s	300mL/min

莲臭味消除、评定的研究少见。

电子鼻是由具有部分选择性的气敏传感器阵列和适当的模式识别系统组成的人工智能系统。通过挥发性化合物与传感器活性材料表面接触时,发生一系列物理、化学变化产生电信号,接口电路将模拟信号转化为数字信号,经过一系列数据处理和模式识别判断,对被测样品进行鉴别[12]。本文旨在探索电子鼻对榴莲果肉中的臭味气体进行定量分析的可行性,建立电子鼻测定榴莲果肉臭味气体的模型,提供一种感官之外的定量评定榴莲臭味的实用方法。

1 材料与方法

1.1 材料与仪器

金枕榴莲果肉 购于辽宁省锦州市新玛特超市 /八成熟。

FA224 型电子天平 上海舜宇恒平科学仪器有限公司; PEN3 型便携式电子鼻 德国 Airsense 公司, 其传感器阵列由 10 个不同的金属氧化物传感器组成 敏感性和选择性达 10⁶~10⁹级,传感器对某一大类芳香物质响应显著,具体见表 1; 根据气味标识并利用化学计量统计学软件对不同气味进行快速鉴别,对每一样品进行数据计算和识别,可得到样品的气味指纹图和气味标记^[13]。

表 1 电子鼻传感器所对应的香气类型

Table 1 Aroma types corresponding to sensors of E-nose

阵列序号	传感器名称	性能描述	
1	W1C	芳香成分苯类	
2	W5S	氮氧化合物	
3	W3C	氨类 芳香成分	
4	W6S	氢气	
5	W5C	烷烃类芳香成分	
6	W1S	甲烷	
7	W1W	硫化物	
8	W2S	醇类	
9	W2W	芳香成分 有机硫化物	
10 W3S		烷烃	

1.2 实验方法

1.2.1 样品处理 称取 0.25 g 榴莲果肉于小瓶盖(内径 12 mm 高 11 mm) 中,用粘纸封口(见图 1) 封口面积为 113 mm² 在粘纸上打孔(0 孔、8 孔、16 孔),孔径均为 0.9 mm,从而减小榴莲果肉臭味气体的散发速率,保证电子鼻对臭味气体的检测在短时间内达到平稳状态。然后,将小瓶盖置于 50 mL 广口瓶中,用粘纸将广口瓶密封 30 min 以富集臭味气体。0 孔、8 孔、16 孔每个水平 23 个平行样 即每个水平中 20 个平行样用于 PLS 分析建模 3 个平行样用于 PLS 模型验证。

1.2.2 电子鼻检测数据采集 在室温(20℃)下,采

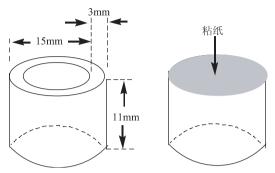


图 1 小瓶盖及粘纸封口示意图

Fig.1 Diagram of the cap sealed with sticker

用顶空抽样的方法用电子鼻检测 ,电子鼻实验参数 见表 2。

从图 2 可知 样品在 478~480s 之间信号曲线较为平稳 本实验用稳定状态下 478~480s 之间的平均信号作为分析的时间点。

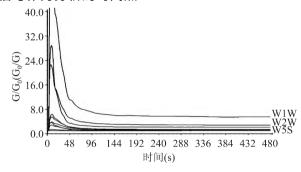


图 2 0 孔处理传感器响应图

Fig.2 Sensor response of the 0 hole

1.2.3 数据分析方法 采用电子鼻自带的 Winmuster 软件 进 行 主 成 分 分 析 (PCA)、负 荷 加 载 分 析 (Loadings) 偏最小二乘法分析(PLS) 。

通过 0 孔、8 孔、16 孔的分组方式,输入经不同孔数处理的样品的相对含量(0、0.8、1.6)。由于榴莲是一种含有多挥发性成分的物质,很难制备出臭味气体浓度一定的标准样品,所以此处输入的相对含量是根据 0 孔、8 孔、16 孔三种孔数所成规律而设定的臭味气体含量,即 0、0.8、1.6 为榴莲果肉经 0 孔、8 孔、16 孔处理后释放出臭味气体的相对含量,用 PLS 进行回归分析,建立各孔数 PLS 相对含量模型。

2 结果与分析

2.1 传感器对榴莲果肉挥发性成分的响应

图 2~图 4 分别为榴莲果肉密封后经 0 孔、8 孔、16 孔处理 所富集的臭味气体在传感器上相对电导率(G/G0) 随检测时间的变化情况。由图 2~图 4 可以看出 ,在测定初始阶段相对电导率快速变化 ,192s后逐渐平缓。通过电子鼻传感器对榴莲果肉挥发性物质的响应实验可知 ,电子鼻对榴莲果肉的挥发性成分有明显响应 ,并且每一个传感器对其响应值各

Science and Technology of Food Industry

不同 ,见图 $2\sim$ 图 4 中的 $W1W\sqrt{W2W\sqrt{W5}S}$ 所在位置 各不相同。所以 利用 PEN3 电子鼻系统识别榴莲臭味气体可行。

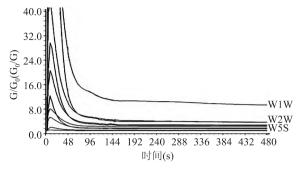


图 3 8 孔处理传感器响应图

Fig.3 Sensor response of the 8 holes



图 4 16 孔处理传感器响应图

Fig.4 Sensor response of the 16 holes

2.2 榴莲果肉臭味气体的 PCA 主成分分析

本文中处理后的榴莲果肉臭味气体用电子鼻检测(1~10 传感器),运用 PCA 分析发现(见图 5),不同孔数间相距较远,数据采集点表现出明显的聚集特性,PCA 分析法能较好区分三种孔数的样品。一般情况下,两个主成分总贡献率之和超过 70%~85%,说明其代表的信息更全面^[14]。由图 5 所示,通过 PCA 分析得出,第一主成分和第二主成分的总贡献率达到 99.49%,所以这两个主成分已基本代表了样品的主要信息。第三、四主成分在区分中不起作用,甚至可能有抵消作用,因此不予考虑。从图 5 看出,各孔数的组内聚集性较好,在横坐标上的组内距离都很小,部分孔数在纵坐标上组内距离较大,但纵坐标第二主成分的贡献率较小,只有 0.78%,所以尽管纵坐标上的距离较大,但实际差别并不大。

当仅仅选择 7 号传感器对处理后的榴莲果肉臭味气体进行电子鼻检测时,两个主成分总贡献率之和仍超过 70%~85%,甚至达到 100%。所以,这两个主成分已经代表了样品的主要信息,见图 6。

2.3 贡献率分析(Loadings)

观察传感器在 Loadings 分析图中坐标接近零,在实际分析中可以不计该传感器的作用。如果某个传感器的负载参数离零点越远,说明该传感器对样品主成分的贡献率越大[15]。

如图 7 所示,传感器 7(W1W) 对第一主成分的 贡献最大。据此可知传感器 7 发挥了较大的作用,而传感器 1(W1C)、2(W5S)、3(W3C)、4(W6S)、5

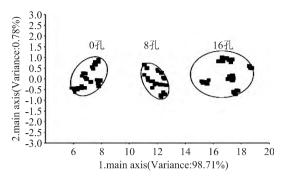


图 5 0、8、16 孔榴莲挥发性成分的 1-10 传感器 PCA 主成分分析图

Fig.5 Principal component analysis of durian volatile substances detected by 1–10 sensors of PCA of the three processings

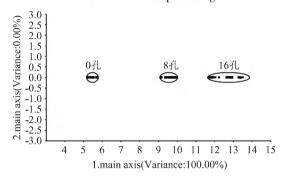


图 6 0、8、16 孔榴莲挥发性成分的 7 号传感器 PCA 主成分分析图

Fig.6 Principal component analysis of durian volatile substances detected by seventh sensor of the three processings (W5C)、6(W1S)、8(W2S)、9(W2W)、10(W3S)发挥的作用较小。传感器7对硫化物最敏感。因此,硫化物是榴莲果肉臭味气体的主要成分[16]。

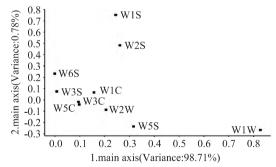


图 7 1~10 传感器 Loadings 贡献率分析图 Fig.7 Contribution analysis of 1~10 sensors

为了印证 7 号传感器贡献率 本文只选择 7 号传感器进行实验 结果见图 8 ,即 7 号传感器在第一主成分上的比重仍较大。从而进一步说明硫化物是榴莲果肉臭味气体的主要成分。

2.4 榴莲果肉臭味气体的 PLS 预测模型分析

本文运用 Excel 2003 软件及 PLS 构建不同孔数 榴莲果肉臭味气体浓度变化的预测模型。由图 9 所示,以测得的榴莲果肉臭味气体的相对含量(实际值)为纵坐标、电子鼻预测值为横坐标,建立 PLS 线性拟合曲线 0 孔、8 孔、16 孔的相对含量拟合的线性

Vol.36, No.07, 2015

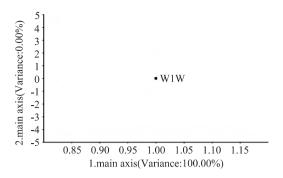


图 8 7 号传感器 Loadings 贡献率分析图 Fig.8 Contribution analysis of seventh sensor

相关系数为 0.997 ,可以认为建立的 0 孔、8 孔、16 孔的相对含量与电子鼻输出信号之间的 PLS 曲线有较好的线性关系。用模型预测 9 个未知样品的相对含量 /结果见表 3 ,预测 0 孔、8 孔、16 孔三种孔数处理后测得的臭味气体相对含量的平均相对误差分别为6.3%、6.5%、6.7% 均小于 10%;说明模型较好地预测了 0 孔、8 孔、16 孔三种处理后的臭味气体相对含量。

图9 PLS 线性拟合曲线

Fig.9 PLS linear fitting curve

表 3 PLS 模型预测榴莲果肉臭味气体相对含量
Table 3 The relative content of the
odor of PLS model estimation

样品类别	预测值	实际值	相对误差 (%)	平均相对误差 (%)
	0.0375	0.0352	6.5	
0 孔	0.0071	0.0077	7.8	6.3
	0.0249	0.0238	4.6	
	0.8023	0.8572	6.4	
8 孔	0.7955	0.7421	7.2	6.5
	0.8722	0.8236	5.9	
	1.6260	1.5224	6.8	
16 孔	1.6177	1.5218	6.3	6.7
	1.5474	1.6638	7.0	

3 结论与讨论

3.1 采用电子鼻分析了榴莲果肉挥发性成分,结果表明 PEN3 电子鼻系统识别榴莲果肉气味可行。

- 3.2 采用 PCA 对原始数据进行分析 ,第一主成分和第二主成分的总贡献率达到 99.49% ,说明 PCA 均能准确区分出不同孔数处理过的榴莲果肉样品气味相对含量。
- 3.3 通过 Loadings 分析证明 ,硫化物是榴莲臭味气体的主要成分。
- 3.4 在对榴莲果肉密封后,打 0 孔、8 孔、16 孔所测得的臭味气体相对含量的平均相对误差均小于 10% PLS 线性拟合曲线的相关系数为 0.997 ,表明 PLS 建立的模型可以准确测定榴莲果肉臭味气体相对含量。

参考文献

- [1]潘永贵.榴莲果实采后生理品质变化和贮藏技术[J].中国南方果树 2008 37(4):45-47.
- [2] Timkhum P, Terdwongworakul A. Non destructive classification of durian maturity of 'Monthong' cultivar by means of visible spectroscopy of the spine [J]. J Food Eng ,2012 ,112 (4):263–267.
- [3]阳君.南国水果之王[J].中国果菜 2000(1):25.
- [4] Foo K Y ,Hameed B H. Textural porosity ,surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation [J]. Chem Eng J 2012 ,187:53-62.
- [5]刘冬英 湖剑锋 济少瑛 筹 . 榴莲的营养成分分析 [J]. 广东微量元素科学 2004 ,11(10):57-59.
- [6] Bai Ngew S ,Therdthai N ,Dhamvithee P. Characterization of microwave vacuum—dried durian chips [J].J Food Eng 2011 ,104 (1):114–122.
- [7]李冬梅,尹凯丹.榴莲的保健价值和加工利用[J].中国食物与营养 2009(3):32-33.
- [8] Olivieri J , Quiliquini Chambard A M , Hauser C. Allergy to durian [J]. Allergy 2002 57(3): 263-263.
- [9]王鹭.臭不可闻的水果之王[J].国际市场 2002(8):45.
- [10]环球时报.泰国人对榴莲又爱又怕[J].旅游纵览(行业版) 2011(4):7.
- [11] 马勇 ,刘水琳 ,张晓莉 ,等 .臭氧消除榴莲果肉臭味的研究[J].中国食品学报 2013 ,13(10):121-125.
- [12] 费雅君 泊雪 康小红.LDA 优化电子鼻传感器阵列的研究[J].食品与机械 2012 28(1):97-100.
- [13]赵国群 姚瑶 ,关军锋 .鸭梨、雪梨果醋香气成分的电子鼻分析[J].食品工业科技 2013 34(22):62-65.
- [14]田怀香 孙宗宇.电子鼻在金华火腿香精识别中的应用[J].中国调味品 2008(11):61-64.
- [15] 胡桂仙 ,王俊 ,海铮 ,等 .不同储藏时间柑橘电子鼻检测研究[J].浙江农业学报 2006 ,18(6):458-461.
- [16]张博 李书倩 ,辛广 ,等 .金枕榴莲果实各部位挥发性物质成分 GC/MS 分析 [J].食品研究与开发 ,2012 ,33 (1): 130-134.