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	 An investigation was conducted to evaluate the capacity of an electronic metal oxide 
semiconductor (MOS)-type nose (e-nose) to classify pork samples with different storage 
times (0–6 d).  The effects of the headspace-generation time and pork sample mass on 
the response of the e-nose were studied using multivariate analysis of variance and one-
way analysis of variance, respectively.  The results showed that the pork sample mass 
had the most significant effect on the e-nose sensor response, followed by the headspace-
generation time.  The optimum parameters were 10 g of sample mass with 5 min of 
headspace-generation time in a 500 mL vial.  After either principal component analysis 
or linear discriminant analysis, the results showed that the e-nose with the optimum 
parameters can accurately classify the pork samples stored for 0–6 d.  A method using a 
back propagation neural network was also performed, and 91.43% of the prediction set (with 
92.86% of the training set) was classified correctly using this model.

1.	 Introduction

	 The main ingredients of meat are water, protein, fat and small amounts of 
carbohydrates.  Owing to its high nutritional value and good taste, the consumer 
demand for meat has been increasing markedly during the last few decades.  However, 
meat is highly susceptible to spoilage and contamination by microorganisms.  During 
storage, the ingredients are decomposed by enzymes and bacteria, producing odor.  The 
protein is decomposed into ammonia, hydrogen sulfide, ethyl mercaptan, etc.  The fat is 
decomposed into aldehydes and aldehyde acids, which cause odor.  The carbohydrates 
are decomposed into alcohols, ketones, aldehydes and carboxylic acid gases.(1)  The odor 
become more intense with the reduction of meat freshness or deterioration.  Consumption 
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of spoiled meat can cause serious health hazards.(2)  Thus, it is necessary for a rapid and 
accurate detection system to be developed for microbiologically spoiled or contaminated 
meat.(3,4)

	 At present, in the meat industry there are three main traditional methods of detecting 
meat freshness: sensory evaluation based on the texture, color, organization status, 
viscidity and odor of the meat,(5) detection of the total volatile basic nitrogen (TVBN),(6) 
and aerobic plate counts of meat samples using standard protocols.(7)  The first method 
is quick but subjective; it is very difficult to evaluate slight differences in the meat 
freshness during the initial stage of putrefaction by this method and it requires people 
with certain professional skills.  The latter two methods are objective, but they are 
destructive, complicated and time-consuming.  Moreover, they are only used to analyze 
one or two specialized components instead of giving complete information on the whole 
meat.  Thus, these traditional methods are consequently unsuitable for on-line application 
in the meat industry.
	 An electronic nose (e-nose), also known as an artificial olfactory system, simulates 
biological functions to identify some simple or complex odors.(8,9)  A typical e-nose 
system contains a selective chemical sensor array, a signal processing subsystem 
and a pattern recognition subsystem.  The sensors in the sensor array are sensitive to 
different substances.  For example, some sensors can discern ammonia and some can 
discern aldehydes.  Thus, the whole sensor array can discern complex odors.  Instead 
of detecting one or two components of the substances, the e-nose obtains the complete 
information required for identification.  In the last decade, a few researchers have been 
trying to study the potential of using the e-nose as a nondestructive method for food 
detection.  García et al.(10) used an e-nose based on metal oxide semiconductor (MOS) 
thin-film sensors to characterize and classify four types of red wines made from the same 
variety of grapes which came from the same cellar.  Two pattern recognition methods, 
principal component analysis (PCA) and a probabilistic neuronal network (PNN) were 
used and the results showed that the e-nose was able to identify the wines well.  Torri 
et al.(11) used a commercial e-nose to monitor the freshness of minimally processed fruit 
(packaged pineapple slices) during storage.  The samples were stored at three different 
temperatures (4–5, 7–8, and 15–16°C) for 6–10 d.  After continuous monitoring of the 
headspace around the fruit, the result showed that the fruit freshness was maintained for 
about 5 d at 4°C, 2 d at 7.6°C and 1 d at 16°C.
	 However, studies using the e-nose are in their infancy and the recognition models 
used often only focused on discrimination.  For example, Hansen et al.(12) in Denmark 
investigated the sensory quality of pork meatloaf using an electronic nose with six 
MOS sensors.  A multivariate data analysis strategy (involving analysis of variance, 
partial least-squares regression, and PCA) was used to determine causal and predictive 
relationships between the raw material and sensory analysis results obtained by the 
electric nose.  The results showed that the six MOS sensors in the odor sensor system 
could detect the raw materials that led to unacceptable products, as determined by 
sensory profiling and in-house sensory quality control.  Vestergaard et al.(13) investigated 
the predictability of an electronic nose system based on ion mobility regarding sensory 
quality changes during the storage of a pork meat pizza topping product and found the 
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electronic nose system to be a relevant device for future at- or on-line implementation in 
the quality control of the pork meat pizza topping product.
	 Moreover, few papers have reported the study of optimum experimental parameters 
and there has been little research on the discrimination of pork storage time using an 
e-nose.  The main objective of this research is to evaluate the capacity of an e-nose to 
classify pork samples with different storage times (0–6 d).  The effects of headspace-
generation time and pork sample mass on the response of the e-nose were studied and the 
optimum experimental parameters of headspace-generation time and sample mass were 
determined after employing multivariate analysis of variance (MANOVA) and one-way 
analysis of variance (ANOVA), respectively.  The latter experiment was carried out with 
the optimum experimental parameters.  Three methods, PCA, linear discriminant analysis 
(LDA) and a back propagation neural network (BPNN), were employed to determine if 
the e-nose can accurately classify the pork samples stored for 0–6 d, as well as predict 
the storage time of the meat samples.

2.	 Materials and Method

2.1	 Sample preparation
	 Fresh lean pork samples were purchased twice, the first time (1750 g) was for the 
preliminary experiment to obtain the optimum parameters and the second time (1100 g) 
was for the discrimination of pork samples stored for 0–6 d.  Both samples were obtained 
from the same parts of pigs and the same supplier in the local farmers’ market (30.26 
N, 120.19 E, Zhejiang province, China) 4 h after being slaughtered and were minced 
immediately on the spot.  All the samples were packed immediately using polystyrene 
base trays and were covered with commercial food-grade polymer wraps just before 
being transported to the lab.  The samples were stored at 5°C in a fridge before detection, 
except for the ones examined on the first day (denoted as day 0).  

2.2	 Electronic nose system
	 The experiment was performed with a portable electronic nose (PEN2, Airsense 
Analytics, GmBH, Schwerin, Germany) (Fig. 1).  This instrument consists of an auto-
sampling apparatus that is exposed to the volatile gases, an array of sensors and pattern 
recognition software that is run on a computer.  The sensor array is composed of ten 
different MOSs.  A description of the ten MOSs is given in Table 1.

2.3	 Experimental procedure
	 The concentration of the volatile gases was affected by the mass and headspace-
generation time of the samples,(14) so a set of preliminary experiments were performed to 
determine the optimum experimental parameters.  Three main factors were considered: 
(1) mass of the pork samples (M: 10 and 25 g); (2) storage time (ST: 0 and 1 d); and (3) 
headspace-generation time (HGT: 5, 15, and 25 min).  The samples stored for 0 and 1 d 
were each divided into six groups, denoted as 10 – 5, 10 – 15, 10 – 25, 25 – 5, 25 – 15, 
25 – 25.  The number format is mass – headspace-generation time, for example, the 10 – 
5 group means 10 g of sample with 5 min of headspace-generation time.  The multifactor 
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preliminary experiment was conducted with seven replicates for each group (Table 2).  
After determining the optimum experimental parameters, the pork samples stored for 
0–6 d (15 replicates for each day) were detected using the e-nose under these parameters.
	 Each pork sample was placed in a 500 mL airtight glass vial that was sealed with a 
plastic wrap.  The glass vial was closed for a certain time (headspace-generation time) 
while the headspace collected the volatile gases from the pork sample.  During the 
measurement, the headspace gases were pumped into the sensor arrays through Teflon 
tubing connected to a needle in the plastic wrap.  The measurement phase lasted for 
65 s, which was long enough for the sensors to reach stable signal values.  The signal 
data from the sensors were collected with a computer once every second during the 
measurements.  When the measurement was complete, the acquired data were stored for 
later use.  The experiment and measurements were carried out at 20±1°C.  After each 
experiment, zero gas (air filtered with active carbon) was pumped into the sample gas 
path from the other port of the instrument.

Table 1
Sensors used and their object substances in PEN2.
Array number Sensor Substances for sensing
MOS 1 W1C Aromatics
MOS 2 W5S Nitrogen oxides
MOS 3 W3C Ammonia, aromatic molecules
MOS 4 W6S Hydrogen
MOS 5 W5C Methane, propane and aliphatic nonpolar molecules
MOS 6 W1S Methane
MOS 7 W1W Sulfur-containing organics
MOS 8 W2S General alcohols
MOS 9 W2W Aromatics, sulfur- and chlorine-containing organics
MOS 10 W3S Methane and aliphatics

Fig. 1.	 Structure of e-nose.
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2.4	 Statistical analysis
	 PCA is a very powerful multivariate statistical method used to analyze the inherent 
structure of data.(15)  The main purpose of this linear feature extraction method is to 
reduce dimensions by projecting the m-dimensional data set (m is the number of sensors) 
into a dimension smaller than m.  These new variables are more descriptive because they 
are chosen to obtain the maximum variance in the data matrix,(16) and based on them, 
the samples differ from each other.  Loadings represent coefficients of the principal 
components (PCs) and indicate how much the original variables contribute to the PCs.  
Scores reflect the location of the samples along the PCs and show sample differences or 
similarities.(17)

	 LDA is another widely used statistical method.  Similar to PCA, it also takes a linear 
combination of the original variables to construct a discriminant function.(18)  Compared 
with PCA, the LDA method can be used to determine the distribution of points in the 
same category and the distance between them.  It maximizes the variance between 
categories and minimizes the variance within categories to improve the resolution of 
classes.(19)  The graphical view of LDA results is similar to a PCA display.
	 The BPNN has been a widely used method for the e-nose.(20–22)  The BPNN can be 
described as a nonlinear projection between the input vectors and output vectors.  A 
typical BPNN model includes an input layer, a hidden layer (one layer or more), and an 
output layer.
	 Three eigenvalues (maximum, average and the 60 s value of the sensor signal) of 
every sensor signal were adopted and then all the 30 data from the ten sensor signal 
values were used as the input vector of the BPNN.  The output vector was designed to 
be seven-dimensional, in accordance with the seven storage days.  The training goal 
error was 0.001.  In accordance with the dimensions of the input and output vectors, as 

Table 2
Preliminary experiment method.
Storage 
time (d) Mass (g) Headspace-generation 

time (min)
Number of 

samples
0 15 5 7
0 15 15 7
0 15 25 7
0 25 5 7
0 25 15 7
0 25 25 7
1 15 5 7
1 15 15 7
1 15 25 7
1 25 5 7
1 25 15 7
1 25 25 7
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well as many trials, the network topology was a four-layer net designed as 30-7-7-7.  
While determining the suitable network topology, the network processes the inputs and 
compares the resulting outputs against the desired outputs.  Errors are then propagated 
back through the system, causing the system to adjust the weights that control the 
network.(15)  This process occurs over and over until the error matches the training goal 
error.  
	 The data processing method, PCA, LDA and ANOVA were performed using SAS 
software and the BPNN was operated using the network toolbox in MATLAB R2008a.

3.	 Results and Discussion

3.1	 Response signal of sensors 
	 Figure 2 shows typical response curves of the ten sensors during the measurement 
of a pork sample.  Each curve represents a sensor’s ratio of conductance (G/G0, where 
G and G0 are the conductivities of the sensor when exposed to the sample gas and zero 
gas, respectively).  At first, the conductivities of sensors MOS1 and MOS3 increased 
quickly, whereas those of sensors MOS2, MOS7, MOS8, and MOS9 decreased quickly, 
those of sensors MOS5, MOS4, and MOS6 changed slowly, and that of sensor MOS10 
almost remained the same.  Finally, all the sensors stabilized after about 55 s.  Thus, to 
save time, the measurement time was set at 65 s and the flush time was set at 50 s in this 
research.  The response values of each sensor at 60 s were extracted for further analysis.

3.2	 Optimum parameters
3.2.1	MANOVA result
	 A 3-factor analysis of variance was performed to see how these factors affected the 
response of the e-nose.  The three factors are M (sample mass), T (headspace-generation 
time) and D (storage time).  The statistical analysis results are summarized in Table 3.  
The magnitudes of the F-values indicate the relative importance of the factors to some 

Fig. 2.	 Response curves of sensors for pork sample.
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extent.
	 As shown in Table 3, the mass of the sample, the storage time and the headspace-
generation time all had a very significant effect on the response of the e-nose (p < 0.001).  
The interactions of M×T and M×T×D also had a significant effect on the response of 
the e-nose (p < 0.05).  It can also be observed that the storage time had the highest 
F-value, which means that the e-nose signals differed between samples with different 
storage times.  This proved the feasibility of using the e-nose to distinguish pork with 
different storage times.  The mass factor had the second highest F-value, followed by the 
headspace-generation time.  Thus, it is very important to determine the sample mass and 
headspace-generation time.

3.2.2	ANOVA result
	 ANOVA was carried out for groups 10 – 5, 10 – 15, 10 – 25, 25 – 5, 25 – 15, and 
25 – 25 and the F-value for each group was obtained.  The results of the six groups are 
summarized in Table 4.
	 As shown in Table 4, all the groups had very significant effects on the response of the 
e-nose and the combination 10 – 5 had the highest F-value.  This means that when the 
mass is 10 g and the headspace-generation time is 5 min, the e-nose has the most obvious 
difference between samples with different storage times.  Therefore, in this research, the 
optimum parameters are 10 g of pork sample with 5 min of headspace-generation time.  

3.2.3	Discrimination power (DP)
	 DP is another index used to observe the magnitude of difference among the 
samples.(22)  All the combinations with different masses and headspace-generation 
times (as described before) were subjected to DP analysis and a DP value was obtained 
(listed in Table 5).  The number format is storage time – mass – headspace-generation 
time; for example, 0 – 10 – 5 means stored for 0 day, 10 g of sample mass with 5 min 
of headspace-generation time.  As shown in Table 5, the 10 – 5 combination has the 
highest DP value, which means that the e-nose response of this combination has the most 
obvious difference between day 0 and day 1.  This result is the same as the ANOVA 
result.

Table 3
MANOVA results (factors are storage days, mass and headspace-generation time).
DS SS DF MS F p
M 17.880 1 17.880 172.231 0.000
T 8.043 2 4.021 38.736 0.000
D 22.875 1 22.875 220.338 0.000
M×T 0.890 2 0.445 4.288 0.017
M×D 0.145 1 0.145 1.393 0.241
T×D 0.217 2 0.108 1.044 0.357
M×T×D 0.678 2 0.339 3.267 0.043
DS: different source, SS: sum of squares, DF: degree of freedom, MS: mean squares.
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3.3	 PCA
	 The pork samples stored for 0–6 d were detected using the e-nose under optimum 
experimental parameters.  For all the pork samples, the response signals of the e-nose 
at 60 s were extracted and analyzed by PCA.  The results are shown in Fig. 3, which is 
a two-dimensional spatial PCA plot defined by the first two principal components.  The 
first principal component (PC 1) provides 94.15% of the total variance and the second 
principal component (PC 2) provides 3.60% of the total variance; the total contribution 
rate is 97.75%, which means that these two components reflect 97.75% of the original 
information.  As seen from the score plot in the area defined using the first two principal 
components, the samples stored for 0–3 d are very concentrated and the samples stored 
for 1–3 d are very close to each other.  This may be explained as follows: for the first 1–
3 d, fresh pork stored at 5°C in the fridge still remained fresh; the change in the volatile 
gases of pork was subtle so the e-nose could not notice the difference.  Thus, the data 
extracted by the e-nose were similar.  However, freezing and unfreezing could cause cell 
damage and affect the quality of pork.  Thus, the samples stored for 0 d, which were used 
for the experiment directly without being stored in the fridge, were discriminated from 
those stored in the fridge for 1–3 d.  In general, all the samples can be clearly divided 
into seven regions according to their storage time, except for overlapping for the samples 
stored for 2–3 d.

Table 4
F-values of six combinations.
Combinations F-value P
10 – 5 209.883 0.000 
10 – 15 44.131 0.000 
10 – 25 66.676 0.000 
25 – 5 89.451 0.000 
25 – 15 159.226 0.000 
25 – 25 55.049 0.000 
The number format is mass – headspace-generation time; for example, 10 – 5 means 10 g of sample with 5 min of 
headspace-generation time.

Table 5
Results of DP test of six combinations.

1 – 10 – 5 1 – 10 – 15 1 – 10 – 25 1 – 25 – 5 1 – 25 – 15 1 – 25 – 25
0 – 10 – 5 0.967
0 – 10 – 15 0.555
0 – 10 – 25 0.753
0 – 25 – 5 0.582
0 – 25 – 15 0.852
0 – 25 – 25 0.448
The number format is storage time – mass – headspace-generation time: for example, 0 – 10 – 5 means stored for 
0 day, 10 g of sample with 5 min of headspace-generation time.
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3.4	 LDA
	 The same data analyzed by PCA were extracted by LDA (Fig. 4).  The first 
discriminant function (LD1) provides 64.10% of the total variance and the second 
discriminant function (LD2) provides 20.24% of the total variance; the total contribution 
rate is 84.34%.  Similar to the PCA results, although the samples stored for 2 d have an 
overlap with the samples stored for 3 d, the samples can be clearly divided into seven 
regions according to their storage time.

3.5	 BPNN
	 In this study, a 30-7-7-7 BPNN model was used for the storage time prediction of the 
pork samples stored for 0–6 d.  The 105 samples (7 storage times×15 duplicates) were 
divided into two groups: 70 samples for the training set (10 samples from each group 
were randomly chosen) and 35 samples for the prediction set.  Thus, the input layers for 
the training set and prediction set were a 70×30 matrix and a 35×0 matrix, respectively.  
The results are shown in Tables 6 and 7, respectively.
	 The total identification rate of the simulation results for the training set was 93.33% 
and the total identification rate for the prediction set was 92.38%.  It should be noticed 
that neither the prediction set nor the training set could correctly discriminate the samples 
stored between 2 and 3 d.  This result is in accordance with the results obtained by PCA 
and LDA; this implied that the pork samples stored for the first 2 or 3 d changed little 
and remained fresh.  

Fig. 3.	 PCA analysis of meat stored from 0–6 d.



266	 Sensors and Materials, Vol. 25, No. 4 (2013)

Fig. 4.	 LDA analysis of meat stored from 0–6 d.

Table 6
BP results for the original data in the training set.
ST NS Recognition results Identification rate of 

each day
Identification 

rate of all days0 1 2 3 4 5 6 
0 10 10 100%

92.86%

1 10 10 100%
2 10 7 3 70%
3 10 9 1 90%
4 10 10 100%
5 10 9 1 90%
6 10 10 100%
ST: storage time; NS: number of samples

Table 7
BP results for the original data in the prediction set.
ST NS Recognition results Identification rate of 

each day
Identification 

rate of all days0 1 2 3 4 5 6
0 5 5 100%

91.43%

1 5 5 100%
2 5 2 3 40%
3 5 5 100%
4 15 5 100%
5 5 5 100%
6 5 5 100%
ST: storage time; NS: number of samples
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4.	  Conclusions

(1)	The result of MANOVA shows that it is feasible to discriminate pork with different 
storage times using the MOS-type e-nose.  The sample mass and headspace-
generation time have a significant effect on the response of the e-nose.  By ANOVA 
and DP analysis, the optimum experimental parameters were determined to be 10 g of 
sample mass with 5 min of headspace-generation time.

(2)	The storage time of pork can be discriminated by PCA or LDA.  The samples 
can be clearly divided into seven regions according to their storage time, except 
for overlapping between the samples stored for 2 and 3 d.  The LDA method was 
superior to PCA for the discrimination of the pork samples based on the MOS-type 
e-nose signals.  

(3)	A 30-7-7-7 BPNN model was used for the prediction of the storage time.  The 
results showed that 92.38% of the prediction set and 93.33% of the training set were 
classified correctly using this model.  The incorrect discrimination mainly came from 
the confusion between the samples stored for 2 and 3 d.  This implied that the pork 
samples stored for the first 2 or 3 d changed little and remained fresh.
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